Pre Calc. BC Abstract Algebra - REVIEW Name_____

1. Consider the relation $(\mathbb{Q}^*,*)$, where $a * b = \frac{a}{b}$ and \mathbb{Q}^* is rational numbers without

zero. Discuss the truth of the following statement:

"Each element is its own inverse for this operation."

2. Determine which (if any) relations below form abelian groups. Demonstrate **all** the properties. Be clear, concise, and complete.

a) $\left(\mathbb{Z}_{9}^{*},\otimes\right)$

b) (W,*) where x * y = |x - y|

c) • as shown in the table at right

0	!	#	\$	%
!	!	%	!	#
#	%	#	#	\$
\$!	#	\$	%
%	#	\$	%	!

- 3. Consider the operation * , such that $x * y = \frac{xy}{2}$.
 - a) For which of the following sets is * closed?
 i) Z ii) Q ⁺ iii) R iv) {even integers} v) {0, 1, 2}
 - b) Is the operation associative? Demonstrate it.

c) Is there an identity? Find it.

d) What is the inverse of 5?

e) Is ({2, 4, 6, 8, ...}, *) an abelian group? Explain.

- 4. Let H be the set of symmetry *rotations* for a regular octagon.
 - a) Make a list of the elements of H. Indicate the order of each element.
 - b) Is (H, *) a group?
 - c) List all the subgroups of H.
 - d) Is (H, \star) isomorphic to $sym(\Box)$ Be complete and specific in your answer.
- 5. Five groups are defined below. Determine which are isomorphic.
- a) (\mathbb{Z}_4 , \oplus) b) (\mathbb{Z}_5^* , \otimes)
- d) The symmetry group for a rhombus.
- e) The rotational symmetry group of a square.

c)	Ø	а	b	С	d
	а	b	а	d	с
	b	а	b	С	d
	С	d	С	b	а
	d	с	d	а	b

6. List all possible subgroups for ($\mathbb{Z}_{\mbox{12}}$, \oplus).

7. Consider the two statements below and provide a reason, example or counter example

a) A non-cyclic group can have a cyclic sub-group.

b) An non-abelian group can have an abelian sub-group.

- 8. Consider the group (\mathbb{Z}_{7}^{*} , \otimes)
 - a) List all the elements with their orders.
 - b) What is the inverse of 4?
 - c) List a generator of \mathbb{Z}_{7}^{*} .
 - d) Find a subgroup of order 3.
 - e) Explain why (\mathbb{Z}_7 , \oplus) has no subgroups. *Hint: what is the order of* \mathbb{Z}_7 ?

9. Consider the symmetry group, H, for

the regular pentagon shown at right.

a) Draw or describe one transformation that is an element of H. (*NOT the identity*).

b) What is the order of H?

c) Compare H to $\left(\mathbb{Z}_{_{10}},\oplus\right).$ Explain why these two groups are not isomorphic.

d) Find two isomorphic subgroups from each of these groups.