Pre Calc. BC Abstract Algebra - REVIEW

Name

1. Consider the relation $\left(\mathbb{Q}^{*}, *\right)$, where $a * b=\frac{a}{b}$ and \mathbb{Q}^{*} is rational numbers without zero. Discuss the truth of the following statement:
"Each element is its own inverse for this operation."
2. Determine which (if any) relations below form abelian groups. Demonstrate all the properties. Be clear, concise, and complete.
a) $\left(\mathbb{Z}_{9}^{*}, \otimes\right)$
b) $\left(W,{ }^{*}\right)$ where $x * y=|x-y|$
c) \circ as shown in the table at right

\circ	$!$	$\#$	$\$$	$\%$
$!$	$!$	$\%$	$!$	$\#$
$\#$	$\%$	$\#$	$\#$	$\$$
$\$$	$!$	$\#$	$\$$	$\%$
$\%$	$\#$	$\$$	$\%$	$!$

3. Consider the operation $*$, such that $x * y=\frac{x y}{2}$.
a) For which of the following sets is * closed?
i) \mathbb{Z}
ii) \mathbb{Q}^{+}
iii) \mathbb{R}
iv) $\{$ even integers $\}$
v) $\{0,1,2\}$
b) Is the operation associative? Demonstrate it.
c) Is there an identity? Find it.
d) What is the inverse of 5 ?
e) Is $(\{2,4,6,8, \ldots\}, *)$ an abelian group? Explain.
4. Let H be the set of symmetry rotations for a regular octagon.
a) Make a list of the elements of H . Indicate the order of each element.
b) Is $(\mathrm{H}, *)$ a group?
c) List all the subgroups of H .
d) Is $(\mathrm{H}, *)$ isomorphic to $\operatorname{sym}(\square)$ Be complete and specific in your answer.
5. Five groups are defined below. Determine which are isomorphic.
a) $\left(\mathbb{Z}_{4}, \oplus\right)$
b) $\left(\mathbb{Z}^{*}{ }_{5}, \otimes\right)$
d) The symmetry group for a rhombus.
e) The rotational symmetry group of a square.

c) | ø | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- |
| a | b | a | d | c |
| b | a | b | c | d |
| c | d | c | b | a |
| d | c | d | a | b |

6. List all possible subgroups for $\left(\mathbb{Z}_{12}, \oplus\right)$.
7. Consider the two statements below and provide a reason, example or counter example
a) A non-cyclic group can have a cyclic sub-group.
b) An non-abelian group can have an abelian sub-group.
8. Consider the group $\left(\mathbb{Z}^{*}{ }_{7}, \otimes\right)$
a) List all the elements with their orders.
b) What is the inverse of 4 ?
c) List a generator of $\mathbb{Z}^{*}{ }_{7}$.
d) Find a subgroup of order 3 .
e) Explain why $\left(\mathbb{Z}_{7}, \oplus\right)$ has no subgroups. Hint: what is the order of \mathbb{Z}_{7} ?
9. Consider the symmetry group, H , for the regular pentagon shown at right.
a) Draw or describe one transformation that is an element of H . (NOT the identity).

b) What is the order of H ?
c) Compare H to $\left(\mathbb{Z}_{10}, \oplus\right)$. Explain why these two groups are not isomorphic.
d) Find two isomorphic subgroups from each of these groups.
