

2. An arithmetic sequence has $a_{10} = 1776$ and $a_{18} = 1992$

a) find
$$a_1$$
 b) find n such that $a_n = 2100$

c)
$$\sum_{k=1}^{20} a_k$$
 d) find n such that $\sum_{k=1}^{n} a_k = 46,425$

3. A geometric sequence has $a_5 = 16$ and $a_9 = 81$

a) find a_1 b) find n such that $a_n = 410 \frac{1}{16}$

- c) find a_{10} (two answers) d) find S_{10} (two answers)
- 4. Use binomial expansion to find the coeffeicient of the x^5y^3 term in $(2x+3y)^8$
- 5. Find the value of x if $\{8, (2x+1), 50, ...\}$ is a geometric sequence.
- 6. Consider a geometric series beginning with 1.
 - a) find r if the series converges to 100
 - b) find r if the series converges to 2
 - c) find r if the series converges to 1
 - d) find r if the series converges to 1/3

7. Is it possible to have a series where an approaches zero, but Sn approaches infinity? If so, give an example, if not, explain why.

8. a) Express the following series in sigma notation: 1-3

 $1-3+\frac{9}{2!}-\frac{27}{3!}+\frac{81}{4!}+\dots$

b) To what exact value does the above series converge?

- 9. What is the middle term in the 18th row of Pascal's triangle?
- 10. Find the first 10 terms of the recursive sequence defined by $a_1 = 3$, $a_2 = 17$, and $a_n = |a_{n-2} a_{n-1}|$. What is a_{100} ?

11. Prove by induction: $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$

12. Write out the first five terms of the expansion for each of the following

1) 1/e,
$$e^{1,1}$$
, 8; 2) 1533, 22, 35790, 25; 3) 256/81, 13, ±243/2, 58,025/162 or -11,605/162;
A) 48,384 ; 5) 19/2 or -21/2; 6) 99/100, 1/2, 0, not possible; 7 harmonic series, 8) $\sum_{n=0}^{\infty} \frac{(-3)^n}{n!}$,
 $\frac{1}{n} \int_{0}^{a} \frac{1}{n!} \int_{0}^{a} \frac{1}{n!}$