Precalc BC Exponents and Logs Review

No Calculator!

1) The function $y=8^{x}$ is stretched horizontally by a factor of 6 , stretched vertically by a factor of 4 and then translated horizontally 2 units to the right. Write an expression for the new function in the form $y=a b^{x}$.
2) Simplify $\log _{2}(3) \times \log _{3}(5) \times \log _{5}(2)$
3) Sketch the graph of $y=\ln \left(\frac{1}{x+2}\right)$. Indicate asymptotes and intercepts.

4) Write as a single log:
a) $2 \ln (x-1)-\ln \left(x^{2}-3 x+2\right)+\ln (x-2)$
b) $\log (1000) \times \log \left(x y^{2}\right)+\log (x)$
5) Given the $\log (25)=1.3978$ determine each of these:
a) $\log (5)$
b) $\log (1 / 25)$
c) $\log (.000025)$
d) $\log (6250)$
6) Solve for $x: 9^{x}-10\left(3^{x}\right)+3^{2}=0$
7) Write an exponential equation for the graph containing the points $(2,21)$ and $(6,189)$. Simplify to the form $y=a b^{x}$
8) Solve the equations below (exact values, no calculators):
a) $2^{2^{x}}=256$
b) $x^{3 / 2}=8^{5 / 2}$
c) $\log \left(x^{2}\right)=4$
d) $\log (x-5)+\log (x+10)=2$
e) $\left(x^{2}-28\right)^{2 / 3}=9$
9) Write a logistic function with an upper bound of 36 , passing through the points $(0,12)$ and $(1,28)$.
10) Consider the functions $f(x)=e^{x}$ and $g(x)=x^{2}$. These functions can be composed in two ways: $f(g)$ and $g(f)$.
a) Are the two compositions equivalent?
b) Can either (or both) of these be expressed as a simple dilation of $f(x)$? Be specific.
c) Can either (or both) of these be expressed as a simple translation of $f(x)$? Be specific.
d) Do either (or both) of these have an inverse function? If so, find it!

Calculator Okay for These!

11) A sample of radioactive isotope, which originally weighed 48 g , decayed to 41 g in exactly 5 days.
a) Write a function modeling the weight of the isotope.
b) What will it weigh after 5 more days?
c) What is the half life of the isotope?
d) When will there be just 1 gram left? (use logs)
12) A glass of water at a temperature of $50^{\circ} \mathrm{F}$ is placed outside on a winter day when the temperature is just 8°. In 30 minutes the temperature of the water is 38°. How long will it take (from when it was initially placed outside) for the water to begin to freeze (32 $)$?
13) An interest rate of 7% compounded continuously is equivalent to what annual rate compounded monthly?
