Name:

1. Solve for the indicated variables:

a)
$$\begin{bmatrix} 1 & 2 \\ c & d \end{bmatrix} \times \begin{bmatrix} 1 & a \\ b & 2 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 11 & 8 \end{bmatrix}$$
 b) $\begin{bmatrix} 2 & 1 & 0 \\ -1 & 2 & 4 \end{bmatrix} \times \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$

2. Perform the indicated multiplication. Do it first by hand, then verify with a calculator.

	2	1	0		5	Ге	2ر م
a)	4	-2	3	×	5 0 2	b) [5 3	1
	0	1	-1		2	L -2	2]

3. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ Find each of these:
a) A x B b) B x A

4. a) Find a *non-zero* 2 x 2 matrix, A, such that $A \times \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Start with $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and work from there.

b) Can you find A such that A x A = 0?
(Hint: start with
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 and see where it leads you!)

5. If A is a 3x5 matrix and C is a 3x4 matrix, then what order is B if A x B = C?