Precalc BC
 Pendulum Lab
 Name:

1) Collect data on the period of pendula of varying lengths ($10-500 \mathrm{~cm}$), do at least 5 different lengths. I suggest finding the period of 10 or so oscillations (and dividing by $10)$, for the sake of accuracy. Complete the table below.

Trial \#	length cm	number of oscillations	total time	time per oscillation (aka. period)
1				
2				
3				
4				
5				
6				
7				

2) Make a well labeled plot of your data. Sketch a smooth curve. Include title, label axes, indicate scale and units

3) Assuming your data corresponds to a power function $y=a x^{b}$, estimate b. That is, based on the graph's curve, is $b<0, \quad 0<b<1$, or $b>1$? Explain your reasoning!
4) Find a suitable power regression for your data using your calculator's regression capabilities. Write the equation here, use at least 3 significant digits.
5) Based on your model, estimate the period of a pendulum suspended from the top of the Eifel Tower (324m).
6) Based on your model, find the length of a pendulum with a period of 18 seconds (this is the period of the pendulum in Cornell's clock tower).

Note: you DON'T need logs for this, so don't use them.
7) The formula for the period of a pendulum is $T=2 \pi \sqrt{\frac{l}{g}}$,
where T is the period, I is the length of the pendulum, and g is the constant for acceleration due to gravity. Find the value of g by plugging in one of your data points (use one of the longer penedulum lengths).
The units should be: $\mathrm{cm} / \mathrm{sec}^{2}$

