side A

- 7 The transformation that moves every point in the plane under the rule $(x, y) \rightarrow (-y, x)$ is a:
 - (1) rotation
 - (2) reflection in the x-axis
 - (3) dilation
 - (4) point reflection
- 8 Using the diagram of a regular polygon below, find $R_{-120^{\circ}} \circ R_{180^{\circ}} \circ R_{240^{\circ}}(B)$.

- (1) A
- (2) B
- (3) E
- (4) F
- 9 In this figure, p, m, and n are lines of reflection. Find $r_v \circ r_n \circ r_m(D)$.

- (1) A
- (2) B
- (3) C
- (4) D
- 10 If point M(-5, 8) is reflected in the line y = 2, what are the coordinates of M'?
 - (1) (-5, 10)
 - (2) (-5, -4)
 - (3) (9, -4)
 - (4) (-3, 10)
- 11 A transformation maps (1, 3) onto (-3, -1). This transformation is equivalent to a:
 - (1) rotation of 90°
 - (2) reflection in the origin
 - (3) reflection in the line y = -x
 - (4) translation of -3, -1

- 12 Which of these transformations would alter the perimeter of a triangle?
 - (1) $(x, y) \rightarrow (x + 2, y 3)$
 - $(2) (x, y) \rightarrow (4x, 2y)$
 - $(3) (x, y) \rightarrow (x, -y)$
 - $(4) (x, y) \rightarrow (y, -x)$
- 13 If the point (0, -4) is rotated 90° *clockwise* about the origin, its image is on the line:
 - (1) y = x
 - (2) y = -x
 - (3) x = 0
 - (4) y = 0
- 14 Which of the following compositions is a direct isometry?
 - (1) $R_{90^{\circ}} \cdot r_{x-axis}$
 - (2) $r_{y=x} \circ T_{-3,4}$
 - (3) $r_{x=1} \circ r_{y-axis}$
 - (4) $D_2 \circ r_{y=x}$
- 15 If the dilation D_k of point A(4, -8) is A'(-2, 4), the dilation factor k equals:
 - $(1) -\frac{1}{2}$
 - (2) $\frac{1}{2}$
 - (3) 2
 - (4) 4
- 16 Look at the figure below.

If the figure is rotated 90° counterclockwise and then reflected in the *y*-axis, its image would be which of the following?

Transformations

side B

- 3 $R_o \cdot R_o(x, y)$ would result in a point whose coordinates are:
 - (1) (x, y)
 - (2) (-x, y)
 - (3) (x, -y)
 - (4) (y, x)
- 4 Which composition would produce an image triangle whose area is *not* equal to the area of the original triangle?
 - (1) $r_{y-axis} \circ r_{x-axis}$
 - (2) $T_{2,-3} \circ r_{y=x}$
 - $(3) \quad r_{y=-x} \circ D_3$
 - (4) $R_o \cdot R_o$
- 5 $r_{y=x} \circ r_{x-axis}$ produces a transformation that is:
 - (1) a direct isometry
 - (2) an opposite isometry
 - (3) an isometry that is both direct and opposite
 - (4) not an isometry
- 6 $D_2 \circ D_{\frac{1}{2}}(x, y) =$
 - (1) (2x, 2y)
 - (2) (x, y)
 - $(3) \ \left(\frac{1}{2}x, \frac{1}{2}y\right)$
 - $(4) \ \left(\frac{1}{4}x, \frac{1}{4}y\right)$
- 7 What is $r_{y=2} \circ r_{x-axis}(-3, 4)$?
 - (1) (-3,0)
 - (2) (-3, 2)
 - (3) (-3,4)
 - (4) (-3,8)
- 8 Given square *ABCD* labeled counterclockwise. What is $R_{90^{\circ}} \circ R_{180^{\circ}}(A)$?
 - (1) A
 - (2) B
 - (3) C
 - (4) D
- 9 Which of the following is equivalent to $T_{2,4} \circ T_{2,-4}$?
 - (1) $T_{4,8}$
 - (2) $T_{4,-16}$
 - (3) $T_{4,0}$
 - (4) $T_{0,-8}$

- 10 $r_{y=x} \circ r_{y=x}(x, y) =$
 - (1) (x, y)
 - (2) (-x, y)
 - (3) (x, -y)
 - (4) (y, x)
- 11 Which property is *not* preserved under a glide reflection?
 - (1) distance
 - (2) angle measure
 - (3) orientation
 - (4) parallelism
- 12 In the given figure, p and q are lines of symmetry for regular hexagon *HEXAGN*. Find $r_q \circ r_p(X)$.

- 4 If the coordinates of Q are (-2, 5), what are the coordinates of $(r_{y-axis} \circ R_{90^{\circ}})(Q)$?
 - (1) (-2, -5)
 - (2) (-5,2)
 - (3) (5, -2)
 - (4) (2, -5)
- 5 Which of the following is *not* an isometry?
 - $(1) (x, y) \rightarrow (-y, x)$
 - (2) $(x, y) \rightarrow (-4 + x, y + 3)$
 - $(3) (x, y) \rightarrow (x, 2y)$
 - $(4) (x, y) \rightarrow (-x, y)$
- 6 If line a is parallel to line b, then $r_a \circ r_b(\triangle CTH)$ is equivalent to a:
 - (1) translation
 - (2) rotation
 - (3) dilation
 - (4) reflection in y = x