<u>PreCalc BC</u>

is

<u>Conics</u>

1. The graph of
$$3x^2 - 5xy + 2y^2 + 8x - 7y + 9 = 0$$

- a) a parabola b) a circle c) an ellipse d) a hyperbola e) your momma
- 2. An equation of the parabola shown below is

a)
$$(y-1) = 12(x-2)^2$$
 b) $12(x-2) = (y-1)^2$
c) $(x-2) = 12(y-1)^2$ d) $(y-1) = \frac{1}{12}(x-2)^2$
e) $(y-1) = \frac{3}{4}(x-2)^2$

- **3**. The eccentricity of the conic $4x^2 y^2 = 36$ is
- a) 0.87 b) 1.12 c) 1.73 d) 2.24 e) 5.20

4. Which of the following is the equation of a circle that has its center at the origin and is tangent to the line with equation 3x - 4y = 10?

a)
$$x^{2} + y^{2} = 2$$

b) $x^{2} + y^{2} = 3$
c) $x^{2} + y^{2} = 4$
d) $x^{2} + y^{2} = 5$
e) $x^{2} + y^{2} = 10$

5. What is the equation of the set of points so that the distance between any point and (0, 0) is twice the distance between that point and the *x*-axis?

a)
$$3x^2 - y^2 = 0$$

b) $x^2 - 3y^2 = 0$
c) $x^2 + y^2 - 2x = 0$
d) $x^2 + y^2 - 2y = 0$
e) $4x^2 + 3y^2 = 0$

Name:

- **6**. The set of points (x, y) that satisfy (x-3)(y+2) > 0 lies in quadrant(s)
- a) I and IV b) only II c) III and IV d) I, III, and IV e) all four quadrants

7. A point moves in a plane so that its distance from the origin is always twice its distance from point (1, 1). All such points form

a) a line b) a parabola c) a circle d) an ellipse e) a hyperbola

8. If $(x-4)^2 + 4(y-3)^2 = 16$ is graphed, the sum of the distance from any point on the curve to the two foci is

a) 4 b) 8 c) 12 d) 16 e) 32

9.The center of the circle $x^2 + y^2 + ax + by + 2 = 0$ is point (4, -8), then a + b =

a) -4 b) 4 c) 8 d) -8 e) 24

10. The *y*-coordinate of one focus of the ellipse $36x^2 + 25y^2 + 144x - 50y - 731 = 0$ is a) 7.81 b) 1 c) 4.32 d) -2 e) 3.32

11. For what values of *k* does the graph of $\frac{(x-2k)^2}{1} - \frac{(y-3k)^2}{3} = 1$ pass through the origin?

d)
$$\pm \sqrt{5}$$
 e) no value

12. What is the solution set of $\frac{x+3}{x} < 5$?