Examine the following pairs of groups and determine whether they are isomorphic. Make a list of elements and their orders to get started.

1.

and
$$\left(\mathbb{Z}_4,\oplus\right)$$
.

*	w	x	у	Z
w	Z	у	W	Х
x	у	Z	х	W
у	W	Х	у	Z
z	х	W	Z	у

- 2. The *rotational* symmetry group of a square, and $(\{2, 4, 6, 8\}, \bigotimes_{10})$ (What is the identity in the second group?).
- 3. The permutation group of 2 elements, and (\mathbb{Z}_2, \oplus) .
- 4. $(\mathbb{Z}_5^*, \otimes)$, and $(\{1, 3, 7, 9\}, \emptyset)$, where $x \emptyset y = the <u>last digit</u> in the product <math>xy$.
- 5. (\mathbb{Z}_5,\oplus) and the rotational symmetry group for a regular pentagon.

6.({1, 2, 4, 5, 7,8},
$$\otimes_9$$
) and $\left\{ \left\{ 1, -1, \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i \right), \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i \right), \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i \right), \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i \right) \right\}, \times \right\}$.

7. Can you draw a figure whose symmetry group is isomorphic to the group shown at right? (Can you draw a figure for which this represents the entire symmetry group, or is this merely a sub-group?)

*	С	I	Р	S
С	S	Р	I	С
ı	Р	S	С	I
Р	I	С	S	Р
S	С	I	Р	S