Pre Calc BC Matrices and Groups Review

1. Which of the five groups below are isomorphic?
$\mathrm{G}=\left(\mathrm{z}_{5}^{*}, \otimes\right) ; \mathrm{H}=\left(\mathrm{z}_{4}, \oplus\right) ; \mathrm{J}=$ square rotation group $\mathrm{K}=(\{1,-1, i,-i\}, \times) \quad \mathrm{M}=$ rectangle symmetry group
a) G~H only
b) $\mathrm{H} \sim \mathrm{J}$ only
c) $\mathrm{K} \sim M$ only
d) $\mathrm{H} \sim \mathrm{J} \sim \mathrm{K}$ only
e)G~H~J~K
2. Let a be an element of group G, a group of order 15. Which of the statements below must not be true?
a) a is the identity
b) a is its own inverse (but not the identity)
c) $a^{4}=a$
d) a is in a subgroup of G
e) a is not in a subgroup of G
3. Given the system of equations:

$$
\left\{\begin{array}{l}
x-3 y+z=-2 \\
2 x+3 y-4 z=-4 \\
x+y-z=0
\end{array}\right.
$$

the product $x y z$ equals
a) 0
b) 6
c) -3
d) 10
e) -12
8. If $k=\frac{453!}{450!3!}$, then
a) $k>10^{100}$
b) $10^{10} \leq k<10^{100}$
c) $10^{5} \leq k<10^{10}$
d) $10 \leq k<10^{5}$
e) $k<10$
9. (p, q) is called a lattice point if p and q are both integers. How many lattice points lie in the area between the two curves $x^{2}+y^{2}=9$ and $x^{2}+y^{2}-6 x+5=0 ?$
a) 0
b) 1
c) 2
d) 3
e) 4
4. Which of these is a cyclic group?
a) $\left(z_{7}^{*}, \otimes\right)$
b) the symmetry group for a square
c) the symmetry group for an equilateral Δ
d) the permutation group of four elements
e) the permutation group of 5 elements
5. Given $\left[\begin{array}{lll}2 & 3 & a \\ b & 1 & 4\end{array}\right] \times\left[\begin{array}{l}1 \\ 5 \\ 2\end{array}\right]=\left[\begin{array}{l}15 \\ 10\end{array}\right]$
the sum of a and b is
a) 1
b) -1
c) 4
d) -3
e) -4
6. The transformation matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ represents
a) $r_{y=x}$
b) $r_{y=-x}$
c) $R_{180^{\circ}}$
10. If the determinant of the matrix $\left[\begin{array}{ll}7 & a \\ 4 & 3\end{array}\right]=1$ then a must equal
a) -1
b) 0
c) 1
d) 2
e) 5
11. If the matrix $\left[\begin{array}{cc}0 & -1 \\ 2 & 0\end{array}\right]$ is in a multiplicative group, which of these must also be in the group?
I. $\left[\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right]$
II. $\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]$
III. $\left[\begin{array}{cc}0 & 0.5 \\ -1 & 0\end{array}\right]$
a) I only
b) II only
c) III only
d) I and II e) II and III
d) $R_{90^{\circ}}$
e) $R_{-90^{\circ}}$

