<u>Pre Calc B</u>	, C	<u>e - stuff</u>		Name	
1. Find the value of a \$1 investment after one year with an annual interest rate of 100% compounded (refer to p. 305-7 in your text if necessary)					
a) anr	nually	b) quarterly	c) n	nonthly	
	d) da	ily	e) continu	ously	
2. a) Write $_{n}P_{5}$ in terms of n.					
b) Write $_{n}C_{5}$ in terms of n.					
3. Analyze the following limits:					
a) $\lim_{n\to\infty}$	$\int_{-\infty}^{\infty} \frac{n^2 - 1}{n^2 + 1}$	b) $\lim_{n\to\infty}\frac{n-3n^3}{n^4}$	- c)	$\lim_{n\to\infty}\frac{n^2+1200}{3-17n^2}$	d) $\lim_{n\to\infty} \left(\frac{n+1}{n}\right)^n$

4. Use your calculator to find the approximation: $e \approx \sum_{n=0}^{7} \frac{1}{n!}$

5. Use the fact that $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$ to find each limit below in terms of e. Verify with your calculator! (*enter into y= menu and check the table for n = 1000*) a) $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2n}$ b) $\lim_{n \to \infty} \left(1 + \frac{1}{2n} \right)^n$ c) $\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$

d)
$$\lim_{n \to 0} (1+n)^{1/n}$$
 e) $\lim_{n \to \infty} (1+\frac{3}{n})^n$ f) $\lim_{n \to \infty} (1+\frac{\sqrt{2}}{n})^n$

6. Write out the first five terms of the expansion for each of the following and check with your calculator:

a) e^2

- b) *e*√³
- **c)** e^{-2}
- d) $e^{1/2}$

7. a) Explain why x^i has no meaning generally.

b) Give the binomial expansion of e^{i} .

c) What does your calculator think? Does it give a value for e^i ?

8. a) Write the binomial expansion for e^{xi} .

b) Separate your expansion into a + b*i* form

c) Find an expansion to 5 terms for each of the following. Calculate an approximate value and then verify with your calculator.

i)
$$e^{2i}$$
 ii) $e^{\pi i}$

9. a) If $e^{xi} = \cos x + i \sin x$, derive the series expansions for $\cos(x)$ and $\sin(x)$ from the expansion for *e*. Verify these on your calculator.

(*Hint:*
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$
)

b) Use your expensions to find the first five terms of each of the following. Verify with your calculator.

i) sin 2 *ii*) cos 1 *iii*) sin π/3