PreCalc BC Polar 'n' Parametric Review

Name: Key

1. Sketch the following (check with calculator, afterwards).

a)
$$r = -4\sin(3\theta)$$

c)
$$\theta = \frac{2\pi}{3}$$

d)
$$r = 1 + 3\cos\theta$$

e)*
$$r = 8\sin\theta\cos\theta$$

*think dbl angle formula

- 2. Write equations (in polar form):
- intcpts are integers a)

x-intcpts are at 1, 2, 4, 8 b)

Γ= (2) 27

c) In polar form: y = 3

d) In polar form: y = 1/x

e) An archimedian spiral passing through [1, π/3].

3. Find the perimeter of a triangle whose coordinates are

$$A[0,0]; B\left[8,\frac{\pi}{3}\right]; C\left[8,\frac{\pi}{3}\right] \subset \left[6,\frac{5\pi}{3}\right]$$

4. The graph of $r(\theta)$ is shown at right.

Sketch and label:

a)
$$-r(\theta)$$

b)
$$r\left(\theta - \frac{\pi}{2}\right)$$

c)
$$r(-\theta)$$
, assuming $r(-\theta) = r(\theta)$

5. Eliminate the parameter and sketch the graphs below:

a)
$$\begin{cases} x(t) = t^2 \\ y(t) = t^2 + 1 \end{cases}$$

$$y = \chi + 1$$

$$(\chi > 0)$$

b)
$$\begin{cases} x(t) = 2 + \sin(t) \\ y(t) = 1 + \cos(t) \end{cases}$$

6. A receiver on a football team, with a head start of 20 yards, runs downfield at a speed of 9 yd/sec. The quarterback throws a pass at an angle of 28° and a velocity of 23 yd/sec. Assume both players are 2 yards tall, and the term for displacement due to gravity is: $-5.3 t^2$.

a) Set up a system of parametric equations:

receiver

football

$$x(t) = 20 + 9t$$

$$y(t) = \underline{\lambda}$$

$$y(t) = -5.3t + 23 \sin(28)t + 2$$

b) Find the distance between the ball and the receiver after 1.9 seconds.

SHOW WORK
$$\Gamma(1.9) = (37.1, 2) \qquad \sqrt{(37.1 - 38.59)^2 + (2 - 3.38)^2} = 2.03 \text{ yd}$$

$$C(1.9) = (38.59, 3.8) \qquad \sqrt{(37.1 - 38.59)^2 + (2 - 3.38)^2} = 2.03 \text{ yd}$$

7. A pebble becomes lodged in the tread of a 32" diameter tire rotating (along a road) at 3 revolutions per second. Write a system of parametric equations for the position of the pebble.

