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Two points determine a unique straight line.
Two straight lines determine a unique point.

d. Find other pairs of statements that express &.SNN.Q between
straight lines and points. (For example, think of triangles.)

The duality expressed here between points and lines .mm in some
ways cleaner on a sphere. We will explore related dualities in Chapters

10, 19, and 21.

Chapter 4

STRAIGHTNESS ON
CYLINDERS AND CONES

Definition 10: When a straight line intersects another
straight line such that the adjacent angles are equal to one
another, then the equal angles are called right angles and the
lines are called perpendicular straight lines.

Postulate 4: Al right angles are equal.

— Buclid, Elements, [ Appendix A]

‘When I was in high school geometry class I could not understand why

Euclid would have made such a postulate — How could they possibly
not be equal? In this chapter you will discover that sometimes right
angles are not all equal and that this is connected to cones and cylinders.

We continue with straightness, but now the goal is to think intrinsi-
cally. You should be comfortable with straightness as a local intrinsic
notion — this is the bug’s view. This notion of straightness is also the
basis for the notion of geodesics in differential geometry. Chapters 4 and
5 can be covered in either order, but we think that the experience with
cylinders and cones in 4.1 will help the reader to understand the hyper-
bolic plane in 5.1. If the reader is comfortable with straightness as a
local intrinsic notion, then it is also possible to skip Chapter 4 if
Chapters 17 and 22 on geometric manifolds are not going to be covered.
However, we suggest that the reader read the sections of this chapter
starting with Geodesics on Cylinders (at least enough to find out what
Euclid’s Fourth Postulate has to do with cones and cylinders).

When looking at great circles on the surface of a sphere, we were
able (except in the case of central symmetry) to see all the symmetries of
straight lines from global extrinsic points of view. For example, a great
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34 Chapter 4 Straightness on Cylinders and Cones

circle extrinsically divides a sphere into two hemispheres that are mirror
images of each other. Thus on a sphere, it is a natural tendency to use the
more familiar and comfortable extrinsic lens instead of taking the bug’s
Jocal and intrinsic point of view. However, on a cone and cylinder you
must use the local, intrinsic point of view because there is no extrinsic

view that will work except in special cases.

ProBLEM 4.1 STRAIGHTNESS ON CYLINDERS AND CONES

a. What lines are straight with respect to the surface of a cylinder
or a cone? Why? Why not?

b. Examine:

“e  Can geodesics intersect themselves on cylinders and
cones’?

+ Can there be more than one geodesic joining two
points on cylinders and cones?

+ What happens on cones with varying cone angles,
including cone angles greater than 360°?7

SUGGESTIONS
Problem 4.1 is similar to Problem 2.1, but this time the surfaces are
cylinders and cones.

Make paper models, but consider the cone or cylinder as continuing
indefinitely with no top or bottom (except, of course, at the cone point).
Again, imagine yourself as a bug whose whole universe is a cone or
cylinder. As the bug crawls around on one of these surfaces, what will
the bug experience as straight? As before, paths that are straight with
respect to a surface are often called the “geodesics” for the surface.

As you begin to explore these questions, it is likely that many other
related geometric ideas will arise. Do not let seemingly irrelevant excess
geometric baggage worry you. Often, you will find yourself getting lost
in a tangential idea, and that’s understandable. Ultimately, however, the
exploration of related ideas will give you a richer understanding of the
scope and depth of the problem. In order to work through possible
confusion on this problem, try some of the following suggestions others

Prosrem 4.1  Straightness on Cylinders and Cones 35

have found helpful. Each suggestion involves constructing or using
models of cones and cylinders.

+ You may find it helpful to explore cylinders first before
beginning to explore cones. This problem has many aspects,
but focusing at first on the cylinder will simplify some things.

+ If we make a cone or cylinder by rolling up a sheet of paper,
will “straight” stay the same for the bug when we unroll it?
Conversely, if we have a straight line drawn on a sheet of
paper and roll it up, will it continue to be experienced as
straight for the bug crawling on the paper?

¢ Lay a stiff ribbon or straight strip of paper on a cylinder or
cone. Convince yourself that it will follow a straight line with
respect to the surface. Also, convince yourself that straight
lines on the cylinder or cone, when looked at locally and
intrinsically, have the same symmetries as on the plane.

¢ If you intersect a cylinder by a flat plane and unroll it, what
kind of curve do you get? Is it ever straight? (One way to see
this curve is to dip a paper cylinder into water.)

¢ On a cylinder or cone, can a geodesic ever intersect itself?
How many times? This question is explored in more detail in
Problem 16.1, which the interested reader may turn to now.

¢ Can there be more than one geodesic joining two points on a

cylinder or cone? How many? Is there always at least one?

- Again this question is explored in more detail in Problem
16.1.

There are several important things to keep in mind while working
on this problem. First, you absolutely must make models. If you
attempt to visualize lines on a cone or cylinder, you are bound to make
claims that you would easily see are mistaken if you investigated them
on an actual cone or cylinder. Many students find it helpful to make
models using transparencies.

Second, as with the sphere, you must think about lines and triangles
on the cone and cylinder in an intrinsic way — always looking at things
from a bug’s point of view. We are not interested in what’s happening in
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3-space, only what you would see and experience if you were restricted
to the surface of a cone or cylinder.

And last, but certainly not least, you must look at cones of different
shapes, that is, cones with varying cone angles.

Cones witH VARYING CONE ANGLES

Geodesics behave differently on differently shaped cones. So an impor-
tant variable is the cone angle. The cone angle is generally defined as
the angle measured around the point of the cone on the surface. Notice
that this is an intrinsic description of angle. The bug could measure a
cone angle (in radians) by determining the circumference of an intrinsic
circle with center at the cone point and then dividing that circumference
by the radius of the circle. We can determine the cone angle extrinsically
in the following way: Cut the cone along a generator (a line on the cone
through the cone point) and flatten the cone. The measure of the cone
angle is then the angle measure of the flattened planar sector.
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Figure 4.1 Making a 180° cone

For example, if we take a piece of paper and bend it so that half of
one side meets up with the other half of the same side, we will have a
180-degree cone. A 90° cone is also easy to make — just use the corner
of a paper sheet and bring one side around to meet the adjacent side.

Also be sure to look at larger cones. One convenient way to do this
is to make a cone with a variable cone angle. This can be accomplished
by taking a sheet of paper and cutting (or tearing) a slit from one edge to
the center. (See Figure 4.2.) A rectangular sheet will work but a circular
sheet is easier to picture. Note that it is not necessary that the slit be
straight!
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Figure 4.2 A cone with variable cone angle (0 - 360°)

You have already looked at a 360° cone — it’s just a plane. The
cone angle can also be larger than 360°. A common larger cone is the
450° cone. You probably have a cone like this somewhere on the walls,
floor, and ceiling of your room. You can easily make one by cutting a
slit in a piece of paper and inserting a 90° stice (360° + 90° = 450°).

| +Q¢

Figure 4.3 How to make a 450° cone

You may have trouble believing that this is a cone, but remember
that just because it cannot hold ice cream does not mean it is not a cone.
If the folds and creases bother you, they can be taken out — the cone
will look ruffled instead. It is important to realize that when you change
the shape of the cone like this (that is, by ruffling), you are only chang-
ing its extrinsic appearance. Intrinsically (from the bug’s point of view)
there is no difference. You can even ruffle the cone so that it will hold
ice cream if you like, although changing the extrinsic shape in this way
is not useful to a study of its intrinsic behavior.

It may be helpful for you to discuss some definitions of a cone, such
as the following: Take any simple (non-intersecting) closed curve a on a
sphere and the center P of the sphere. A cone is the union of the rays
that start at P and go through each point on a. The cone angle is then
equal to (length of @)/(radius of sphere), in radians. Do you see why?
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You can also make a cone with variable angle of more than 180°:
Take two sheets of paper and slit them together to their centers as in
Figure 4.4. Tape the right side of the top slit to the left side of the bottom
slit as pictured. Now slide the other sides of the slits. Try it!

Figure 4.4 Variable cone angle larger than 360°

Experiment by making paper examples of cones like those shown
above. What happens to the triangles and lines on a 450° cone? Is the
shortest path always straight? Does every pair of points determine a
straight line?

Finally, also consider line symmetries on the cone and cylinder.
Check to see if the symmetries you found on the plane will work on
these surfaces, and remember to think intrinsically and locally. A special
class of geodesics on the cone and cylinder are the generators. These are
the straight lines that go through the cone point on the cone or go paral-
lel to the axis of the cylinder. These lines have some extrinsic symme-
tries (can you see which ones?), but in general, geodesics have only
local, intrinsic symmetries. Also, on the cone, think about the region
near the cone point — what is happening there that makes it different
from the rest of the cone? :

& It is best if you experiment with paper models to find out
what geodesics look like on the cone and cylinder before reading
further.
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GEeobEsics ON CYLINDERS

Let us first look at the three classes of straight lines on a cylinder. When

walking on the surface of a cylinder, a bug might walk along a vertical
generator.
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Figure 4.5 Vertical generators are straight

It might walk along an intersection of a horizontal plane with the
cylinder, what we will call a great circle.
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Figure 4.6  Great circles are intrinsically straight

Or, the bug might walk along a spiral or helix of constant slope
around the cylinder.

Figure 4.7 Helixes are intrinsically straight
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Why are these geodesics? How can you convince yourself? And
why are these the only geodesics?

Geopesics oN CONEs

Now let us look at the classes of straight lines on a cone.

Walking along a generator: When looking at straight paths on a
cone, you will be forced to consider straightness at the cone point. You
might decide that there is no way the bug can go straight once it reaches
the cone point, and thus a straight path leading up to the cone point ends
there. Or you might decide that the bug can find a continuing path that
has at least some of the symmetries of a straight line. Do you see which
path this is? Or you might decide that the straight continuing path(s?) is
the limit of geodesics that just miss the cone point.

Help!
Where do 1
go now?

Figure 4.8 Bug walking straight over the cone point

Walking straight and around: If you use a ribbon on a 90° cone,
then you can see that this cone has a geodesic like the one depicted in
Figure 4.9. This particular geodesic intersects itself. However, check to
see that this property depends on the cone angle. In particular, if the
cone angle is more than 180°, then geodesics do not intersect them-
selves. And if the cone angle is less than 90°, then geodesics (except for
generators) intersect at least two times. Try it out! Later, in Chapter 17,
we will describe a tool that will help you determine how the number of
“self-intersections depends on the cone angle.
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Figure 4.9 A geodesic intersecting itself on a 90° cone

LocALLy ISOMETRIC

By now you should realize that when a piece of paper is rolled or bent
into a cylinder or cone, the bug’s local and intrinsic experience of the
surface does not change except at the cone point. Extrinsically, the piece
of paper and the cone are different, but in terms of the local geometry
intrinsic to the surface they differ only at the cone point.

Two geometric spaces, G and H, are said to be locally isometric at
points G in G and H in H if the local intrinsic experience at G is the
same as the experience at H. That is, there are neighborhoods of G
and H that are identical in terms of intrinsic geometric properties. A
cylinder and the plane are locally isometric (at every point) and the plane
and a cone are locally isometric except at the cone point. Two cones are
locally isometric at their cone points only if the cone angles are the
same.

Because cones and cylinders are locally isometric with the plane,
locally they have the same geometric properties. We look at this more in
Chapter 17. Later, we will show that a sphere is not locally isometric
with the plane — be on the lookout for a result that will imply this.

Is “SHorTEST” ALWAYS “"STRAIGHT"?

We are often told that “a straight line is the shortest distance between
two points,” but, is this really true? ,

As we have already seen on a sphere, two points not opposite each
other are connected by two straight paths (one going one way around a

great circle and one going the other way). Only one of these paths is

shortest. The other is also straight, but not the shortest straight path.
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Consider a model of a cone with angle 450°. Notice that such cones
appear commonly in buildings as so-called “outside corners” (see Figure
' 4.10). 1t is best, however, to have a paper model that can be flattened.

Figure 4.10 There is no straight (symmetric) path from 4 to B

Use your model to investigate which points on the cone can be
joined by straight lines (in the sense of having reflection-in-the-line
symmetry). In particular, look at points such as those labeled 4 and B in
Figure 4.10. Convince yourself that there is no path from 4 to B that is
straight (in the sense of having reflection-in-the-line symmetry), and for
these points the shortest path goes through the cone point and thus is not
straight (in the sense of having symmetry).

X A Y

Figure 4.11  The shortest path is not straight (in the sense of symmetry)

Here is another example: Think of a bug crawling on a plane with a
tall box sitting on that plane (refer to Figure 4.11). This combination
surface — the plane with the box sticking out of it — has eight cone
points. The four at the top of the box have 270° cone angles, and the four
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at the bottom of the box have 450° cone angles (180° on the box and
270° on the plane). What is the shortest path between points X and 7Y,
points on opposite sides of the box? Is the straight path the shortest? Is
the shortest path straight? To check that the shortest path is not straight,
try to. see that at the bottom corners of the box the two sides of the path
have different angular measures. (In particular, if X and Y are close to
the box, then the angle on the box side of the path measures a little more
than 180° and the angle on the other side measures almost 270°.)

ReLATIONS TO DIFFERENTIAL GEOMETRY

So, we see that sometimes a straight path is not shortest and the shortest
path is not straight. Does it then makes sense to say (as most books do)
that in Euclidean geometry a straight line is the shortest distance
between two points? In differential geometry, on “smooth” surfaces,
“straight” and “shortest” are more nearly the same. A smooth surface is
essentially what it sounds like. More precisely, a surface is smooth at a
point if, when you zoom in on the point, the surface becomes indistin-
guishable from a flat plane. (For details of this definition, see Problem
4.1 in [DG: Henderson].) Note that a cone is not smooth at the cone
point, but a sphere and a cylinder are both smooth at every point. The
following is a theorem from differential geometry:

Tueorem 4.1: If a surface is smooth then an intrinsically
straight line (geodesic) on the surface is always the shortest
path between “nearby” points. If the surface is also complete
(every geodesic on it can be extended indefinitely), then any
two points can be joined by a geodesic that is the shortest path
berween them. See [DG: Henderson], Problem 7.4b and 7.4d.

Consider a planar surface with a hole removed. Check that for points
near opposite sides of the hole, the shortest path (on the plane surface
with hole removed) is not straight because the shortest path must go
around the hole.

We encourage the reader to discuss how each of the previous
examples and problems is in harmony with this theorem.

Note that the statement “every geodesic on it can be extended
indefinitely” is a reasonable interpretation of Euclid’s Second Postulate:
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Every limited straight line can be extended indefinitely to a
(unique) straight line. [Appendix A]

In addition, Euclid defines a right angle as follows:

When a straight line intersects another straight line such that
the adjacent angles are equal to one another, then the equal
angles are called right angles. [ Appendix A]

Note that if you use this definition, then right angles at a cone point are
not equal to right angles at points where the cone is locally isometric to
the plane. And Euclid goes on to state as his Fourth Postulate:

All right angles are equal.

Thus, Euclid’s Fourth Postulate rules out cones and any surface with
isolated cone points. What is further ruled out by Euclid’s Fourth Postu-
late would depend on formulating more precisely just what it says. It is
not clear (at least to the author!) whether there is something we would
want to call a surface that could be said to satisfy Euclid’s Fourth Postu-
late and not be a smooth surface. However, it is clear that Euclid’s
postulate at least gives part of the meaning of “smooth surface,” because
it rules out isolated cone points.

Chapter 5

STRAIGHTNESS ON
HyperBoOLIC PLANES

[To son Janos:] For God’s sake, please give it [work on
hyperbolic geometry] up. Fear it no less than the sensual
passion, because it, too, may take up all your time and deprive
you of your health, peace of mind and happiness in life.
— Wolfgang Bolyai (1775-1856)
[SE: Davis and Hersch, page 220]

We now study hyperbolic geometry. This chapter may be skipped if the
reader will not be covering geometric manifolds and the shape of space
in Chapters 17 and 22 and if in the remainder of this book the reader
leaves out all mentions of hyperbolic planes. However, to skip studying
hyperbolic planes would be to skip an important notion in the history of
geometry, and to skip the geometry which may be the basis of our physi-
cal universe.

As with the cone and cylinder, we must use an intrinsic point of
view on hyperbolic planes. This is especially true because there is no
standard extrinsic embedding of a hyperbolic plane into 3-space.

A SHoRrT HisTorY OF HYPERBOLIC GEOMETRY

Hyperbolic geometry, discovered more than 170 years ago by C.F. Gauss
(1777-1855, German), Janos Bolyai (1802-1860, Hungarian), and N.L
Lobatchevsky (1792-1856, Russian), is special from a formal axiomatic
point of view because it satisfies all the postulates (axioms) of Euclidean
geometry except for the parallel postulate. In hyperbolic geometry
straight lines can converge toward each other without intersecting
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