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Every limited straight line can be extended indefinitely to a
(unique) straight line. [Appendix A]

In addition, Euclid defines a right angle as follows:

When a straight line intersects another straight line such that
the adjacent angles are equal to one another, then the equal
angles are called right angles. [ Appendix A]

Note that if you use this definition, then right angles at a cone point are
not equal to right angles at points where the cone is locally isometric to
the plane. And Euclid goes on to state as his Fourth Postulate:

All right angles are equal.

Thus, Euclid’s Fourth Postulate rules out cones and any surface with
isolated cone points. What is further ruled out by Euclid’s Fourth Postu-
late would depend on formulating more precisely just what it says. It is
not clear (at least to the author!) whether there is something we would
want to call a surface that could be said to satisfy Euclid’s Fourth Postu-
late and not be a smooth surface. However, it is clear that Euclid’s
postulate at least gives part of the meaning of “smooth surface,” because
it rules out isolated cone points.

Chapter 5

STRAIGHTNESS ON
HyperBoOLIC PLANES

[To son Janos:] For God’s sake, please give it [work on
hyperbolic geometry] up. Fear it no less than the sensual
passion, because it, too, may take up all your time and deprive
you of your health, peace of mind and happiness in life.
— Wolfgang Bolyai (1775-1856)
[SE: Davis and Hersch, page 220]

We now study hyperbolic geometry. This chapter may be skipped if the
reader will not be covering geometric manifolds and the shape of space
in Chapters 17 and 22 and if in the remainder of this book the reader
leaves out all mentions of hyperbolic planes. However, to skip studying
hyperbolic planes would be to skip an important notion in the history of
geometry, and to skip the geometry which may be the basis of our physi-
cal universe. :

As with the cone and cylinder, we must use an intrinsic point of
view on hyperbolic planes. This is especially true because there is no
standard extrinsic embedding of a hyperbolic plane into 3-space.

A SHORT HisTorY oF HYPERBOLIC GEOMETRY

Hyperbolic geometry, discovered more than 170 years ago by C.F. Gauss
(1777-1855, German), Janos Bolyai (1802-1860, Hungarian), and N.L
Lobatchevsky (1792-1856, Russian), is special from a formal axiomatic
point of view because it satisfies all the postulates (axioms) of Euclidean
geometry except for the parallel postulate. In hyperbolic geometry
straight lines can converge toward each other without intersecting
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46 Chapter 5  Straightness on Hyperbolic Planes

(violating Euclid’s Fifth Postulate), and there is more than one straight
line through a given point that does not intersect (is parallel to) a given
line (violating Playfair’s Parallel Postulate). (See Figure 5.1.)

The reader can explore more details of the axiomatic nature of
hyperbolic geometry in Chapter 10. Note that the 450° cone also violates
the two parallel postulates mentioned above. Thus the 450° cone has
many of the properties of the hyperbolic plane.

Figure 5.1  Two geodesics through a point not intersecting a given line

Hyperbolic geometry has turned out to be useful in various
branches of higher mathematics. Also, the geometry of binocular visual
space appears experimentally to be best represented by hyperbolic
geometry (see [NE: Zage]). In addition, hyperbolic geometry is one of
the possible geometries for our three-dimensional physical universe —
we will explore this connection more in Chapters 17 and 22.

Hyperbolic geometry and non-Euclidean geometry are considered in
many books as being synonymous, but as we have seen there are other
non-Euclidean geometries, particularly spherical geometry. It is also not
mwocwmﬁ to say (as many books do) that non-Euclidean mmonwmad\ was
discovered about 170 years ago. Spherical geometry (which is clearly
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not Euclidean) was in existence and studied by at least the ancient
Babylonians, Indians, and Greeks more than 2,000 years ago. Spherical
geometry was of importance for astronomical observations and astrologi-
cal calculations. In Aristotle we can find evidence that non-Euclidean
geometry was studied even before Euclid. (See [Hi: Heath, page 57] and
[Hi: Toth].) Even Euclid in his Phaenomena [AT: Euclid] (a work on
astronomy) discusses propositions of spherical geometry. Menelaus, a
Greek of the first century, published a book Sphaerica, which contains
many theorems about spherical triangles and compares them to triangles
on the Euclidean plane. (Sphaerica survives only in an Arabic version.
For a discussion see [Hi: Kline, page 119-120].)

Most texts and popular books introduce hyperbolic geometry either
axiomatically or via “models” of the hyperbolic geometry in the Euclid-
ean plane. These models are like our familiar map projections of the
earth and (like these maps of the earth) intrinsic straight lines on the
hyperbolic plane (surface of the earth) are not, in general, straight in the
model (map) and the model, in general, distorts distances and angles. We
will return to the subject of projection and models in Chapter 16.

In this chapter we will introduce the geometry of the hyperbolic
plane as the intrinsic geometry of a particular surface in 3-space, in
much the same way that we introduced spherical geometry by looking at
the intrinsic geometry of the sphere in 3-space. Such a surface is called
an isometric embedding of the hyperbolic plane into 3-space. We will
construct such a surface in the next section. Nevertheless, many texts
and popular books say that David Hilbert (1862-1943, German) proved
in 1901 that it is not possible to have an isometric embedding of the
hyperbolic plane onto a closed subset of Euclidean 3-space. These
authors miss what Hilbert actually proved. In fact, Hilbert [NE: Hilbert]
proved that there is no real analytic isometry (that is, no isometry
defined by real-valued functions which have convergent power series).
In 1972, Tilla Milnor [NE: Milnor] extended Hilbert’s result by proving
that there is no isometric embedding defined by functions whose first
and second derivatives are continuous. Without giving an explicit con-
struction, N. Kuiper [NE: Kuiper] showed in 1955 that there is a differ-
entiable isometric embedding onto a closed subset of 3-space.

The construction used here was shown to the author by William
Thurston (b.1946, American) in 1978F; and it is not defined by equations

The idea for this construction is also included in Thurston’s recent book [DG: Thurston,
pages 49 and 50] and is discussed in the author’s recent book [DG: Henderson, page 311.
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at all, because it has no definite embedding in Euclidean space. In
Problem 5.2 we will show that our isometric model is locally isometric
to a certain smooth surface of revolution called the pseudosphere, which
is well known to locally have hyperbolic geometry. Later, in Chapter 16,
we will explore the various (non-isometric) models of the hyperbolic
plane (these models are the way that hyperbolic geometry 1s presented in
most texts) and prove that these models and the isometric constructions
here produce the same geometry.

ConsTrucTIONS OF HYPERBOLIC PLANES

We will describe four different isometric constructions of hyperbolic
planes (or approximations to hyperbolic planes) as surfaces in 3-space. It
is very important that you actually perform at least one of these
constructions. The act of constructing the surface will give you a feel for
hyperbolic planes that is difficult to get any other way. Templates for all
the paper constructions (and information about possible availability of
crocheted hyperbolic planes) can be found at the supplements site

www.math.cornell.edu/~dwh/books/eg00/supplements.html

1. Tue HypersoLic PLANE FROM PAPER ANNULI

A paper model of the hyperbolic plane may be constructed as follows:
Cut out many identical annular (“annulus” is the region between two
concentric circles) strips as in Figure 5.2. Attach the strips together by
taping the inner circle of one to the outer circle of the other. It is crucial
that all the annular strips have the same inner radius and the same outer
radius, but the lengths of the annular strips do not matter. You can also
cut an annular strip shorter or extend an annular strip by taping two
strips together along their straight ends. The resulting surface is of
course only an approximation of the desired surface. The actual hyper-
bolic plane is obtained by letting & — 0 while holding the radius p fixed.
Note that since the surface is constructed (as 6 — 0) the same every-
where it is homogeneous (that is, intrinsically and geometrically, every
point has a neighborhood that is isometric to a neighborhood of any
other point). We will call the results of this construction the annular hy-
perbolic plane. 1 strongly suggest that the reader take the time.to cut out
carefully several such annuli and tape them together as indicated.
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\M\ tape together ,N/

M tape SN&\NQ,\

If this annular
sirip is kept flat
on the plane, then
this edge will ruffle,
and this edge will bend
up like the start of a cone.

Figure 5.2 Annular strips for making an annular hyperbolic plane

2. How 10 CrocHET THE HYPERBOLIC PLANE

Once you have tried to make your annular hyperbolic plane from paper
annuli you will certainly realize that it will take a lot of time. Also, later
you will have to play with it carefully because it is fragile and tears and
creases easily — you may want just to have it sitting on your desk. But
there is another way to get a sturdier model of the hyperbolic plane,
which you can work and play with as much as you wish. This is the
crocheted hyperbolic plane.

In order to make the crocheted hyperbolic plane you need just very
basic crocheting skills. All you need to know is how to make a chain (to
start) and how to single crochet. That’s it! Now you can start. See Figure
5.3 for a picture of these stitches, and see their description in the list
below.
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a b
Figure 5.3  Crochet stitches for the hyperbolic plane

First you should choose a yarn that will not stretch a lot. Every yarn
will stretch a little but you need one that will keep its shape. Now you
are ready to start the stitches:

1. Make your beginning chain stitches (Figure 5.3a). About 20
chain stitches for the beginning will be enough.

2. For the first stitch in each row insert the hook into the 2nd chain
from the hook. Take yarn over and pull through chain, leaving 2
loops on hook. Take yarn over and pull through both loops. One
single crochet stitch has been completed. (Figure 5.3b.)

3. For the next N stitches proceed exactly like the first stitch except
insert the hook into the next chain (instead of the 2nd).

4. For the (V + 1)st stitch proceed as before except insert the hook
into the same loop as the N-th stitch. .

5. Repeat Steps 3 and 4 until you reach the end of the row.

6. At the end of the row before going to the next row do one extra
chain stitch.

7. When you have the model as big as you want, you can stop by
just pulling the yarn through the last loop.

Be sure to crochet fairly tightly and evenly. That’s all you need
from crochet basics. Now you can go ahead and make your own
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hyperbolic plane. You have to increase (by the above procedure) the
number of stitches from one row to the next in a constant ratio, N to
N + 1 — the ratio and size of the yarn determine the radius (the p in the
annular hyperbolic plane) of the hyperbolic plane. You can experiment
with different ratios BUT not in the same model. We suggest that you
start with a ratio of 5 to 6. You will get a hyperbolic plane ONLY if you
will be increasing the number of stitches in the same ratio all the time.

Crocheting will take some time but later you can work with this
model without worrying about destroying it. The completed product is
pictured in Figure 5.4.

Figure 5.4 A crocheted annular hyperbolic plane

3. {3,7} anp {7,3} PoLYHEDRAL CONSTRUCTIONS

A polyhedral model can be constructed from equilateral triangles by
putting 7 triangles together at every vertex, or by putting 3 regular hepta-
gons (7-gons) together at every vertex. These are called the {3,7}
polyhedral medel and the {7,3} polyhedral model because triangles
(3-gons) are put together 7 at a vertex, or heptagons (7-gons) are put
together 3 at a vertex. These models have the advantage of being con-
structed more easily than the annular or crocheted models; however, one
cannot make better and better approximations by decreasing the size of
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the triangles. This is true because at each vertex the cone angle is (7 x
7/3) = 420° or (3 x 574/7) = 385.71...°), no matter what the size of the
triangles and heptagons are; whereas the hyperbolic plane in the small
looks like the Euclidean plane with 360° cone angles. Another disadvan-
tage of the polyhedral model is that it is not easy to describe the annuli
and related coordinates.

You can make these models less “pointy” by replacing the sides of
~ the triangles with arcs of circles in such a way that the new vertex angles
are 277, or by replacing the sides of the heptagons with arcs of circles
in such a way that the new vertex angles are 2773. But then the model is
less easy to construct because you are cutting and taping along curved
edges.

See Problems 10.6 and 21.5 for more discussions of regular polyhe-
dral tilings of plane, spheres, and hyperbolic planes.

4. HypersoLic Soccer BaLL ConsTRucTION

We now explore a polyhedral construction that involves two different
regular polygons instead of the single polygon used in the {3,7} and
{7,3} polyhedral constructions. A spherical soccer ball (outside the
USA, called a football) is constructed by using pentagons surrounded by
five hexagons or two hexagons and one pentagon together around each
vertex. The plane can be tiled by hexagons, each surrounded by six other
hexagons. The hyperbolic plane can be approximately constructed by
using heptagons (7-sided) surrounded by seven hexagons and two
hexagons and one heptagon together around each vertex. See Figure 5.5.
Because a heptagon has interior angles with 57/7 radians (= 128.57...°),
the vertices of this construction have cone angles of 368.57...° and thus
are much smoother than the {3,7} and {7,3} polyhedral constructions. It
also has a nice appearance if you make the heptagons a different color
from the hexagons. It is also easy to construct (as long as you have a
template — you can find a variety on the supplements website). As with
any polyhedral construction one cannot get closer and closer approxima-
tions to the hyperbolic plane. There is also no apparent way to see the
annuli.
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The hyperbolic soccer ball construction is related to the {3,7}
construction in the sense that if a neighborhood of each vertex in the
{3,7} construction is replaced by a heptagon then the remaining portion
of each triangle is a hexagon.

Figure 5.5 The hyperbolic soccer ball

5. “{3,6%2}" PoLYHEDRAL CONSTRUCTION

We can avoid some of the disadvantages of the {3,7} and soccer ball
constructions by constructing a polyhedral annulus. In this construction
we have seven triangles together only at every other vertex and six trian-
gles together at the others. This construction still has the disadvantage of
not being able to produce closer and closer approximations and it also is
more “pointy” (larger cone angles) than the hyperbolic soccer ball.
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The precise construction can be described in two different (but, in
the end, equivalent) ways:

1. Construct polyhedral annuli as in Figure 5.6 and then tape them
together as with the annular hyperbolic plane.

Figure 5.6  Polyhedral annulus

2. The quickest way is to start with many strips as pictured in Figure
5.7a — these strips can be as long as you wish. Then add four of
the strips together as in Figure 5.7b, using five additional trian-
gles. Next, add another strip every place there is a vertex with
five triangles and a gap (as at the marked vertices in Figure
5.7b). Every time a strip is added an additional vertex with
seven triangles is formed.

The center of each strip runs perpendicular to each annulus, and
you can show that these curves (the center lines of the strip) are each
geodesics because they have local reflection symmetry.

AV
/

Figure 5.7a  Strips

Constructions of Hyperbolic Planes 55

Figure 5.7b  Forming the polyhedral annular hyperbolic plane

HyperBoLic PLANES oF D1FFerReNT RADII (CURVATURE)

Note that the construction of a hyperbolic plane is dependent on p (the
radius of the annuli), which is often called the radius of the hyperbolic
plane. As in the case of spheres, we get different hyperbolic planes
depending on the value of p. In Figures 5.8-5.10 (see next page) there
are crocheted hyperbolic planes with radii approximately 4 ¢cm, 8 cm,
and 16 cm. The pictures were all taken from approximately the same
perspective and in each picture there is a centimeter rule to indicate the
scale.

Note that as p increases the hyperbolic plane becomes flatter and
flatter (has less and less curvature). For both the sphere and the hyper-
bolic plane as p goes to infinity they both become indistinguishable from
the ordinary flat (Euclidean) plane. Thus, the plane can be called a
sphere (or hyperbolic plane) with infinite radius. In Chapter 7, we will
define the “Gaussian Curvature” and show that it is equal to 1/ for a
sphere and —1/p7 for a hyperbolic plane.
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Figure 5.8 Hyperbolic plane with p~ 4 cm

Figure 5.9  Hyperbolic plane with p~ 8 cm

Figure 5.10 Hyperbolic plane with p~ 16 cm
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ProBLEM 5.1 WHAT Is STRAIGHT IN A
HyperBoLIC PLANE?

a. On a hyperbolic plane, consider the curves that run radially
across each annular strip. Argue that these curves are intrinsi-
cally straight. Also, show that any two of them are asymptotic, in
the sense that they converge toward each other but do not
intersect.

Look for the local intrinsic symmetries of each annular strip and then
global symmetries in the whole hyperbolic plane. Make sure you give a
convincing argument why the symmetry holds in the limit as 5—0.

We shall say that two geodesics that converge in this way are
asymptotic geodesics. Note that there are no geodesics (straight lines) on
the plane that are asymptotic.

b. Find other geodesics on your physical hyperbolic surface. Use
the properties of straightness (such as symmetries) you talked
about in Problems 1.1, 2.1, and 4.1.

Try holding two points between the index fingers and thumbs on your
two hands. Now pull gently — a geodesic segment with its reflection
symmetry should appear between the two points. If your surface is
durable enough, try folding the surface along a geodesic. Also, you may
use a ribbon to test for geodesics.

¢. What properties do you notice for geodesics on a hyperbolic
plane? How are they the same as geodesics on the plane or
spheres, and how are they different from geodesics on the plane
and spheres?

Explore properties of geodesics involving intersecting, uniqueness, and
symmetries. Convince yourself as much as possible using your model —
full proofs for some of the properties will have to wait until Chapter 16.

*ProBLEM 5.2 THE PseuposPHERE Is HYPERBOLIC

Show that locally the annular hyperbolic plane is isometric to
portions of a (smooth) surface defined by revolving the graph of
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a continuously differentiable function of 7 about the z-axis. This
is the surface usually called the pseudosphere.

OUTLINE OF PROOF
|. Argue that each point on the annular hyperbolic plane is like any
other point. (Think of the annular construction.)

2 Start with one of the annular strips and complete it to a full annulus
in a plane. Then, construct a surface of revolution by attaching to
the inside edge of this annulus other annular strips as described in
the construction of the annular hyperbolic plane. (See Figure 5.11.)
Note that the second and subsequent annuli form truncated cones.
Finally, imagine the width of the annular strips, 6, shrinking to zero.

cross-section of surface

Figure 5.11  Hyperbolic surface of revolution — pseudosphere

3. Derive a differential equation representing the coordinates of a
point on the surface using the geometry inherent in Figure 5.11. If
A7) is the height (z-coordinate) of the surface at a distance of » from
the z-axis, then the differential equation should be (remember that p
is a constant) -
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dz —r
dr »\MM — 2

4, mo?m. (using tables or computer algebra systems) the differential
equation for z as a function of r. Note that you are not getting r as a
function of z.

5. Then argue (using a theorem from first-semester calculus) that r is a
continuously differentiable function of z.

We can also crochet a pseudosphere by starting with 5 or 6 chain
stitches and continuing in a spiral fashion, increasing as when crocheting
the hyperbolic plane. See Figure 5.12. Note that, when you crochet
beyond the annular strip that lays flat and forms a complete annulus, the
surface forms ruffles and is no longer a surface of revolution (nor a
smooth surface).

Figure 5.12  Crocheted pseudosphere



